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One of the most important problems in the application of direct methods for

large structures is to establish reliable consistency criteria for the correctness

of a phasing trial. The introduction in the twin variables method [Bethanis,

Tzamalis, Hountas, Mishnev & Tsoucaris (2000). Acta Cryst. A56, 105±111] of a

new criterion based on the crystallographic symmetry consists of testing the

phase extension and re®nement algorithm by deliberately sacri®cing the space-

group-symmetry information in the auxiliary variable set then using its gradual

re-appearance as a criterion for correctness. In the present paper, the

crystallographic symmetry test has been used in the implementation of the

twin algorithm in two different ways: (i) as an overall test throughout the

iterations that is likely to re¯ect the correctness of the phasing procedure for

each one of the extension trials in a macromolecular phasing environment; (ii) as

a convenient criterion to determine the optimum cycle for freeing the initial

phases used by the algorithm for the phase-extension procedure.

1. Notation and definitions

MPE: Mean phase error.

(SPE)H: Symmetry phase error ± a measure of the incon-

sistency among the calculated phases for symmetry-related

re¯ections.

(S_Rmod)H: Symmetry modulus error ± a measure of the

inconsistency among the calculated moduli for symmetry-

related re¯ections.

S_MPE: Overall symmetry mean phase error ± discrepancy

index for the phases of a set of re¯ections.

S_Rmod: Overall symmetry mean modulus error ± discrepancy

index for the moduli of a set of re¯ections.

	_S_MPE: Overall symmetry mean phase error for the

auxiliary 	 set.

2. Introduction and definitions

The symmetry information plays an important role in direct

methods from the simple fact that phasing of one re¯ection

implies transfer of this information to all symmetry-equivalent

re¯ections. When the crystal symmetry is known a priori, it

seems natural to introduce in a direct-method algorithm the

exact structure-factor (phase and moduli) relations implied by

symmetry from the very beginning. On the other hand, ef®-

cient testing during the process of phase extension is a crucial

part of direct methods. The available tests often prove to be

insuf®cient in a macromolecular phasing environment for a

strong discrimination between different solutions in a multi-

solution algorithm (Gilmore, 1998). The twin-variables

method offers the possibility to introduce a new test for

successful development of the phase-determining algorithm,

based upon symmetry considerations. This possibility stems

from the involvement of an auxiliary set of variables in

addition to the structure factors as shown below.

To use this test, one must deliberately sacri®ce the ab initio

whole use of space-group-symmetry information. This enables

us to use the gradual establishment of space-group symmetry

in the course of phase extension as a criterion for the

correctness of the calculated phases. This special application

of symmetry in the twin algorithm is the object of the present

paper. Only a thorough examination of this matter, both

theoretically and by computing, is appropriate to bring an

answer to the question whether the advantage of a new reli-

able test compensates for the loss (at least apparent) of the

symmetry information, especially in the ®rst steps of the

algorithm.

An important feature of the TWIN algorithm is the

decoupling between the E's, bearing the observed EH-moduli

information, and the auxiliary variables 	 which alone control

the phasing procedure (Hountas & Tsoucaris, 1995; hereafter

H-T).

EH �
P
K

	K�	KÿH��  !
FT

��r� � j �r�j2 �1�

	K �
P
H

EH	KÿH; where 	H � FT� �r��: �2�

At this point, it is appropriate to stress the relevance of the

above equations to the fundamental quantum-mechanical

principles. We wish to ®nd an approximate wave function in



direct space  (r) such that its squared modulus �(r) `behaves'

like a crystallographic electron-density function. It is note-

worthy that the de®nitions expressed by (1) ensure the posi-

tivity of �(r); correlatively, we note that the positivity of �(r) at

each step of the algorithm is a dif®cult question for most direct

methods. In a crystallographic context, dominated by the

reciprocal-space data, it appears useful to introduce the FT of

the wave function  (r) denoted here by 	H. We wish then that

the FT of �(r), denoted here by EH, satis®es the observed

moduli criterion. This will be achieved by minimizing Mmod as

a function of all 	H:

Mmod �
P
H

�jEHj ÿ jEobs
H j�2 �

P
H

P
K

	K�	KÿH��
���� ����ÿ jEobs

H j
� �2

:

�3�
This FT has a precise physical meaning as the momentum-

space wave function: its square modulus represents the

probability distribution over the momentum in the same way

that �(r) represents the probability distribution over the

position of a quantum-mechanical particle (Bethanis et al.,

2002). In the present context, this physical quantum-

mechanical meaning is not directly involved and the set of 	H

plays the role of an auxiliary set of variables that determines

EH via the left part of (1). In addition, the EH and 	H sets are

linked together via (2), the so-called regression equation

whose direct-method meaning has been given in x2.3 of the

H-T paper. Thus, the twin algorithm aims at determining the

phases of the E's through a very large 	 set, by satisfying a

battery of constraints expressed by minimization functions

like (3) (Bethanis, Tzamalis, Hountas, Mishnev & Tsoucaris,

2000).

3. The concept of the crystallographic symmetry test

The 	's are not restricted by theory to obey the symmetry

constraints and, therefore, arbitrary values can be assigned to

the 	's. Equation (1) allows one to transfer the information

from the 	H set to the EH set. Thus, if we construct an arbi-

trary 	H set that does not obey the space-group symmetry,

equation (1) then will generate EH values that will not respect

the space-group symmetry in both phase and modulus.

However, if the further development of phases tends to the

correct values, then, naturally, the correct relations between

symmetry-related structure factors EH would also tend to

gradually occur. This special feature of the twin algorithm

suggests a new test for phase extension which will be called the

`crystallographic symmetry test'.

If we denote a symmetry operation by R for the rotational

part and T for the translation part, the exact structure-factor

relations implied by symmetry are:

jEHj � jEHRj �4�
'HR ÿ 'H � ÿ2�HT: �5�

In the simple case of space group P21, with only one pair of

symmetry-equivalent re¯ections, (4) and (5) have the form

jEHj � jEHRj �4a�
'HR ÿ 'H � ÿk�; �5a�

where k is the Miller index of the re¯ection H = (hkl).

For structure factors that do not strictly obey symmetry, we

can de®ne discrepancy indices concerning the symmetry-

related phases and moduli. In the particular case of P21 space

group, these indices have the form

�SPE�H � j'H ÿ 'HR � k�j �6�
�S Rmod�H � �jEHRj ÿ jEHj�=jEHj: �7�

These discrepancy indices (6) and (7) may also play the role

of a ®gure of merit for each re¯ection H. From this we obtain

general indices for the whole set of re¯ections, as the mean

value of the individual discrepancies, i.e.

S MPE � h�SPE�Hi �8�
S Rmod � h�S Rmod�Hi: �9�

In the general case, when a space group possesses n symmetry

elements, the above indices are de®ned through the general-

ized equations

�SPE�H �
Pn
s�1

j �'H ÿ 'HRs
� 2�HTsj

.
n �10�

�S Rmod�H �
Pn
s�1

�jEHRs
j ÿ j �EHj�

.Pn
s�1

jEHRs
j; �11�

where by �'H and �EH are denoted the average values of 'HRs

and EHRs
, s � 1; . . . ; n, including the identity.

It is to be noted that an index Rsym similar to equation (9)

has been calculated and used as the basis of a test for relia-

bility of intensity measurements (Blow, 2002), i.e. in a context

different from the present paper.

It is worth mentioning that the above de®nitions are not the

only ones for a given set of data. For instance, an alternative

index based on the complex normalized structure factors,

which combines both phases and moduli, would be:

�S Rcomplex�H �
Pn
s�1

jEHRs
ÿ �EHj

.Pn
s�1

jEHRs
j �12�

S Rcomplex � h�S Rcomplex�Hi: �13�

Similar discrepancy indices can be applied to the auxiliary set

of 	 variables. However, in the applications described below,

only the 	_S_MPE, de®ned as

�	 SPE�H �
Pn
s�1

j �!H ÿ !HRs
� 2�HTsj

.
n �14�

	 S MPE � h�	 SPE�Hi; �15�

where !H is the phase of 	H, i.e. 	H = |	H| exp(i!H), is used.

3.1. Friedel reflections

The above expressions for the space-group symmetry can

also be adapted to the Friedel pairs by including the symmetry

operation
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R �
ÿ1 0 0

0 ÿ1 0

0 0 ÿ1

0@ 1A and T �
0

0

0

0@ 1A:
Note, however, that in the twin algorithm the whole 	 set may

not obey the Friedel pair requirement: 	H = 	(ÿH). Again, the

Friedel requirement may be gradually ful®lled in the course of

the phase extension and therefore it could complement the

space-group symmetry test. However, in the applications

described below, the usefulness of the Friedel test does not

seem to be signi®cant, and we have imposed the Friedel

requirement.

The inner logic of the twin algorithm leads to the use of the

whole set of the Friedel independent re¯ections. Thus, in the

following calculations, the number of re¯ections includes a

complete set of Friedel re¯ections. Clearly, the number of

symmetry-independent re¯ections in P21 is somewhat larger

than half the Friedel independent ones.

4. Practical implementation of the crystallographic
symmetry test in the twin variables method

In the present paper, the crystallographic symmetry test has

been used in the implementation of the twin algorithm in two

different ways described below.

Table 1
Names and chemical, unit-cell and symmetry data for protein structures.

Structure Full name Unit cell (AÊ , �)
Space
group

No. of atoms
in asymmetric
unit cell References

Rnase Ap1 Ribonuclease Ap1 of Aspergillus pallidus a = 32.01, b = 49.76, c = 30.67,
� = 90.0, � = 115.83,  = 90.0

P21 890 Bezborodova et al. (1988)

1BKR Calponin Homology (ch) domain from
Human beta-spectrin

a = 31.65, b = 53.95, c = 32.35,
� = 90.0, � = 105.48,  = 90.0

P21 1095 Banuelos et al. (1998)²

1TMY Chey from Thermotoga maritima a = 32.04, b = 53.95, c = 34.16,
� = 90.0, � = 95.56,  = 90.0

P21 928 Usher et al. (1998)²

² Data were retrieved from the Protein Data Bank.

Table 2
Phase-extension results for three different protein structures.

In all calculations, symmetry indices vary in the same way as MPE does

Initial set Extended set Total (Initial + Extended) set

Data set
Resolution
(AÊ )

No. of
re¯ections MPE

Resolution
(AÊ )

No. of
re¯ections MPE

No. of
re¯ections MPE S_MPE S_Rmod

1 Rnase Ap1 2.5 1000 0� 1.0 16384 15� 17384 14� 1� 1.1%
2 2.5 1000 21� 1.0 17322 60� 18322 58� 63� 39.3%
3 1BKR 2.5 1000 0� 1.0 16828 19� 17828 18� 5� 2.3%
4 2.5 1000 20� 1.0 23030 51� 24030 50� 56� 35.8%
5 1TMY 3.0 1000 0� 1.5 15524 20� 16524 19� 7� 8.5%
6 3.0 1000 20� 1.5 10954 68� 11954 66� 60� 37.8%

Figure 2
Variation of several symmetry indicators during an unsuccessful phase
extension for protein Rnase Ap1 with a starting set of 1000 (non-unique)
known re¯ections at 2.5 AÊ resolution with a mean phase error 21�.
Calculated phases correspond to a resolution range between 2.5 and 1 AÊ .

Figure 1
Variation of several symmetry indices during a successful phase extension
for protein Rnase Ap1 with a starting set of 1000 known re¯ections at
2.5 AÊ resolution. Calculated phases correspond to a resolution range
between 2.5 and 1 AÊ .



4.1. The crystallographic symmetry test as overall test

S_MPE and S_Rmod can be used throughout the iterations

as overall indices that are likely to re¯ect the correctness of

the phasing procedure for each one of the extension trials.

4.1.1. Detailed phase-extension calculations on the Rnase
Ap1 protein structure. Phase-extension attempts have been

made on the protein structure Rnase Ap1 (space group P21)

data (Table 1) using as initial input data a set of 1000 (non-

unique) known phases at 2.5 AÊ resolution. Twin algorithm

calculations are successful when error-free initial phases are

used (Table 2, row 1). On the contrary, the trial is not

successful when an arti®cial error of 21� is imposed on the

values of the initial set of known phases (Table 2, row 2). Fig. 1

provides a detailed description of the variation of S_MPE

during the successful phase extension while Fig. 2 represents

the unsuccessful trial.

From the above two ®gures, it appears that in both cases

S_MPE varies in the same way as MPE does, and that the

symmetry indicators do re¯ect the correctness of the phasing

procedure. This is evidenced below by a detailed examination

of the extended re¯ections.

(a) In the successful trial of Fig. 1, there is a considerable

variation of S_MPE at the ®rst cycles of extension. But in the

unsuccessful trial of Fig. 2, these variations have a larger

amplitude and are extended over a larger number of cycles, i.e.

about 31 cycles in the unsuccessful trial as opposed to 16 cycles

of extension for the successful trial.

(b) In the successful trial, the progress in the calculation of

new phases is quicker than in the unsuccessful one. For

example, it can be seen from Figs. 1 and 2 that 2000 new phases

have been calculated at the 35th cycle for the successful versus

the 55th cycle for the unsuccessful. Moreover, in the plot of

the number of calculated re¯ections, the successful trial is

characterized by an in¯ection point that occurs at about the

same number of cycles as does the in¯ection point of the

S_MPE variation. Such an in¯ection point does not exist in the

unsuccessful trial (Fig. 3).

(c) It is worth noting a difference in the calculation results

of S_MPE and 	_S_MPE. The second index is calculated for

the total number of 	's in all cycles, since all 	's are used and

re®ned from the beginning of the extension. This is the reason

for the small variation of 	_S_MPE in the ®rst cycles of

extension, in contrast with the large variation of S_MPE

calculated only for the accepted (unknown) E's. The latter are

very few in the ®rst cycles of the extension process. Thus, the

examination of the symmetry of the 	 set enriches the

evaluation of the correctness of the phase extension.

In a previous paper (Bethanis, Tzamalis, Hountas, Mishnev

& Tsoucaris, 2000), we have pointed out the extreme dilution

of the phase information of the initial set injected into the

whole set of the initial random 	's. In the present paper, we

emphasize the extreme dilution of the symmetry information

into the whole set of the initial 	's lacking the symmetry
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Figure 3
Plotting in the same ®gure the number of extended phases from Figs. 1
and 2. In the successful trial, the progress in the calculation of new phases
is quicker than in the unsuccessful one as can be seen from the in¯ection
point presented in the corresponding line.

Figure 4
The extreme dilution of the symmetry information presented by an
example described in the above ¯ow chart

Table 3
For protein structure Rnase Ap1, two different phase extensions have been performed.

In the ®rst trial, symmetry was used as a test while in the second trial the symmetry requirements have been imposed from the beginning for all re¯ections. The ®nal
result for the MPE is then improved by only 3�.

Data (protein structure Rnase Ap1)
Phase extension without imposing the symmetry
requirements

Phase extension with the symmetry
requirements imposed from the beginning

Resolution
(AÊ )

No. of known
phases Initial MPE

Resolution of the
extended set (AÊ )

No. of calculated
phases MPE

Resolution of the
extended set (AÊ )

No. of calculated
phases MPE

2.5 1000 21� 1.0 17322 60� 1.0 17616 57�
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information as schematically shown in Fig. 4. This dilution

results in a very weak degree of ful®lment of the space-group-

symmetry relations for the 	 set and can be quantitatively

evaluated by computing the 	_S_MPE. For instance, in Fig. 1

it is shown that the 	_S_MPE at the ®rst iteration step for the

17384 	's is 87�, which is indeed very close to the random

value of 90�.
In order to further study the effect of symmetry, we have

performed in the case of the unsuccessful trial a new cycle of

calculations under exactly the same conditions but with the

symmetry requirement imposed on the 	 set from the

beginning for all re¯ections. The ®nal result for the MPE of

the EH values is then improved by only 3� (Table 3). This

provides evidence that the symmetry information used from

the beginning may not be crucial in the context of the twin

algorithm.

4.1.2. Phase-extension calculations for several protein
structures. Table 2 shows the ®nal values for S_MPE and

S_Rmod for trials of phase extension on data corresponding to

the three different protein structures presented in Table 1. It

can been seen that when the MPE is less than 30� then the

values of S_MPE and S_Rmod are very low (less than 10� and

less than 10%, respectively). On the contrary, when the value

of MPE is about 50±60�, the values of S_MPE and S_Rmod are

over 50� and over 35%, respectively. Here also, the parallel

variation of both S_MPE (or S_Rmod) and MPE permits the

use of S_MPE (or S_Rmod) as a measure of the correctness of

the phase-extension procedure.

4.2. Optimum freeing of the initial phases by using the
crystallographic symmetry test

An important problem in macromolecular crystallography

is that of phase extension and re®nement when initial phase

estimates are available from isomorphous replacement or

anomalous scattering or other methods. In most cases, it is

necessary to extend the phases either from lower to higher

resolution or within the same resolution range. Extensive

treatment of this case with the twin variables can be found in

previous papers (Bethanis, Tzamalis, Hountas, Mishnev &

Tsoucaris, 2000; Bethanis, Tzamalis, Hountas, Tsoucaris et al.,

2000). In these calculations, the initial set has been kept

constant through the extension procedure. But one expects

that the extended re¯ections can also be used in order to

re®ne the initial approximate phases towards the correct

values, provided that a large set of extended phases have

already been computed with a good approximation to their

correct values. An important question is to determine an

appropriate stage at which the variation of the initial set of

structure factors is allowed by the program. Precisely, the

S_MPE and S_Rmod described above prove to be a convenient

criterion for this purpose.

Fig. 5 shows the variation of S_MPE and the number of

calculated phases in each cycle of extension for the 1BKR

protein. In this trial, the starting set consists of 6000 re¯ec-

tions; their phases are obtained by imposing an arti®cial error

of 42� to the correct values. In this ®gure, there exists a

minimum for S_MPE, close to the 20th extension cycle, which

is indicated by an arrow. Thus, the next step was to perform

several extension calculations by freeing the initial phases at a

different cycle of the procedure for each calculation. The

results of these calculations are shown in Table 4, from which

several observations can be made:

(a) The best result, both for the extended and the initial

phases, is achieved when the freeing of the initial phases is

introduced at cycle 20 where the lowest S_MPE occurs. In this

Figure 5
In a preliminary extension calculation, symmetry can monitor the
optimum freeing of the initial re¯ections.

Table 4
For protein structure 1BKR, several phase-extension calculations have been performed by freeing the initial phases at a different cycle of the procedure
for each calculation.

The optimum freeing is observed at the 20th cycle when the S_MPE is minimum.

Final results

Trial no.
No. of extension cycle at which
initial phases are set free

No. of calculated
re¯ections

S_MPE/S_Rmod for the
calculated re¯ections

Number/MPE/S_Rmod

for the extended re¯ections
MPE/S_Rmod for the
initial 6000 re¯ections

1 10 710 40�/26% 25610/53�/16% 41�/10%
2 20 1616 38�/25.9% 25652/32�/16% 30�/25%
3 40 3938 48�/27% 25138/60�/15% 56�/16%
4 60 7604 40�/19.6% 25318/59�/14% 56�/15%
5 80 11478 41�/16.7% 25488/58�/14% 53�/15%
6 100 18054 42�/14.3% 25620/55�/12% 46�/14%
7 110 - - 25050/53�/7% 40�/11%



trial, the ®nal MPE for the 6000 initial phases is 30�, compared

with the starting MPE of 42�.
(b) Freeing the initial phases at a different cycle (10, 40, 60,

80, 100) yields results that are worse compared with the result

without freeing the phases (trial no 7). It is clear that freeing

the initial phases at the proper stage of extension is of crucial

signi®cance for a successful result.

One possible explanation for the improvement of the initial

low-resolution phases is that they participate in a large

number of triplets. When the extended re¯ections have been

calculated with a small MPE then this new information is

conveyed through the convolution equation to the initial

poorly phased re¯ections.

From different trials, we have concluded that an S_MPE of

40� and a number of calculated re¯ections about 1=6 of the

initial number is an acceptable combination of conditions in

order to free the initial phases usually with good results. With

a time-consuming but more ef®cient approach, it is possible to

perform a preliminary extension in order to determine the

exact cycle where S_MPE is minimum and then in the main

extension freeing the initial re¯ections at exactly this cycle.

Furthermore, accumulated experience with this kind of trial

will enhance our ability to choose the optimum number of

cycles for freeing the initial known re¯ections.

5. Conclusions

The decoupling between the E moduli information and the

auxiliary 	 variables, in the context of the twin method,

enabled us to develop a new overall evaluation test based on

crystallographic symmetry. This new criterion consists of

testing the phase-extension and re®nement algorithm by

deliberately ignoring the space-group symmetry in the starting

set, then using its progressive re-establishment as a criterion

for correctness. This provides great ¯exibility in further

developments; as an example, symmetry can monitor the

optimum point to free the initial re¯ections. The calculations

of the present paper (Table 2) have allowed us to narrow down

the limits of the values of the S_MPE for successful and

unsuccessful trials: for S_MPE < 10�, it is probable that phase

extension will be successful while for S_MPE > 50� it is

probable that phase extension will not succeed.

On the other hand, the most commonly used index in

crystallography is the R factor:

R �P
H

jjEcalc
H j ÿ jEobs

H jj
.P

H

jEobs
H j;

which measures the inconsistency among the observed and

calculated moduli. The R factor is closely related to Mmod

[equation (3)]. In the context of the twin algorithm, it has been

observed that Mmod can be readily reduced to practically zero,

but this clearly has no physical meaning. This fact, however,

greatly emphasizes how easy it is to construct density func-

tions whose Fourier coef®cients have the same moduli as a

given set of Eobs. This remark is re¯ected clearly in Table 5

which summarizes phase-extension procedures for different

protein structures.

It should be noted that the idea of the crystallographic

symmetry test is essentially the same, at a very fundamental

level, as the free R test introduced by BruÈ nger (1993). BruÈ nger

has proposed the use of a free R factor in which the intensity

data are partitioned into two sets of unique re¯ections: a

working set {W} and a much smaller test set {T}. When a

structure is re®ned, only set {W} is used throughout. At the

end of the re®nement, an R factor is calculated based only on

set {T}, which has also been deliberately sacri®ced in order to

provide an unbiased criterion of goodness of ®t.

Rfree
T �

P
H2T

jjFobs
H j ÿ jFcalc

H jj
.P

H2T

jFobs
H j:

Further developments include the use of the symmetry tests

for the evaluation of the correctness of the phasing process in

a multisolution algorithm.
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Table 5
Results of phase extension on different protein structures including
S_MPE/S_Rmod and R factor of each trial.

In trials 2, 5, 8, both R factor S_MPE/S_Rmod and MPE indicate successful
phase extension. On the contrary, in trials 1, 3, 4, 6, 7, the R factor is good while
as shown by S_MPE/S_Rmod and MPE these are unsuccessful phase
extensions.

Trial no. Protein S_MPE/S_Rmod R factor MPE

1 Rnase Ap1 38�/32.5% 10% 64�

2 6�/5.5% 10% 10�

3 1BKR 56�/35.8% 12% 51�

4 60�/41.6% 17% 58�

5 6�/7% 11% 26�

6 1TMY 60�/37.8% 12% 78�

7 37�/31.9% 13% 61�

8 7�/8.5% 11% 20�


